
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Introduction to Engage Cloud APIs

Genesys Multicloud CX Web-based
API Reference

7/1/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Contents

• 1 Client libraries
• 2 Authentication
• 3 CometD
• 4 Requests
• 5 Responses and errors

Genesys Multicloud CX Web-based API Reference 2



The Engage Cloud APIs are a collection of web APIs offered in Engage Cloud that send and receive
data over HTTP in JSON (JavaScript Object Notation). You can use these APIs to create your own
custom applications that integrate with Genesys.

Client libraries

One of the first things you’ll need to decide is whether to use the APIs directly or use the client
libraries. The libraries are designed to simplify how you interact with the API and they take care of a
lot of the supporting code needed to make HTTP requests, handle HTTP responses, and enable
CometD.

The libraries are available on GitHub in Java and Node.js, which means others can make bug fixes or
enhancements that would then be reviewed and approved by Genesys before becoming generally
available.

Genesys recommends using the client libraries if possible, but either way you should review the
reference documentation for the Authentication API and any other Engage Cloud APIs you plan to use
to develop your application.

Authentication

All Engage Cloud APIs implement and adhere to the OAuth 2 standard for secure authentication. See
the Authentication Overview for details.

CometD

Many requests in the Engage Cloud APIs are asynchronous. When you send an asynchronous request,
the API returns an HTTP response with a status code, but this only means the request was processed
and sent to a backend Genesys server. When the server finishes processing the request and notifies
the API of any changes in state or errors, the API then sends the updated state or error details to the
client application as an unsolicited notification.

The Engage Cloud APIs uses CometD to deliver these unsolicited notifications to clients. CometD is a
library that allows the server to deliver messages to a web-based client with low-latency using a
variety of transports. The transport used to deliver messages is negotiated between the client and
server based on what the client supports running in a particular browser. For more information about
CometD, or for details about where to obtain client-side CometD libraries for various platforms, see
the official CometD site.

These APIs require CometD to deliver notifications:

Genesys Multicloud CX Web-based API Reference 3



• [[PEC-Developer/Current/WebAPIs/Provisioning_API|]]
• Statistics Overview
• [[PEC-Developer/Current/WebAPIs/Workspace_API|]]

Click the links above and review the “CometD” section on the API’s landing page for information
about which channels you can subscribe to and the notification you’ll receive.

When an API requires CometD, you’ll see a “Notifications” category in its API reference information
(see the Statistics API Notifications page for an example). You can use these endpoints to implement
CometD if you aren’t using a client-side CometD library.

Requests

The Engage Cloud APIs use the following standard HTTP verbs to perform actions on resources:

Verb Description
GET Retrieve resources.
POST Create resources.
PUT Update resources.
DELETE Delete resources.

Requests support typical parameter types like body, header, path, and query, but there is also a
special body parameter called data. This is a JSON object containing any information needed to
execute the action. For example, if you POST to /workspace/v3/voice/make-call, you must include
a data object with the call destination:

{
"data":{

"destination":"5002"
}

}

Responses and errors

All Engage Cloud APIs return a status JSON object with a required code field. You might also see the
message and detail fields, which provide more information about the response. For example:

{
"status":{

"code":0
}

}

For successful responses, you can expect to see the following codes:

Genesys Multicloud CX Web-based API Reference 4



Code Description
0 The synchronous operation was successful.

1

The asynchronous operation was sent successfully.
You’ll find out about the state of the operation
through CometD notifications. For example, if you
POST to /workspace/v3/initialize-workspace,
the Workspace API immediately returns a response
with a status code of 1 and later follows up with the
WorkspaceInitializationComplete event, delivered
via CometD.

2

The synchronous operation was partially
successful. This is returned if at least one action
succeeds in a request that performs a bulk
operation. In this case, the response includes the
status object with a code of 2, as well as data
and errors. The data object includes any
resources that were successfully retrieved as part
of the bulk operation. The errors object is an array
of status objects for each of the operations that
failed in the request.

All other status codes indicate an error and include a message, and possibly a detail field, with
more information about the problem. For example:

{
"status":{

"code":500,
"message":"Resource not found",
"detail":{

"ConfCode":12345
}

}
}

For asynchronous requests, you might also see errors delivered via CometD notifications. For
example, the Workspace API returns an EventError message that includes the related DN, along with
the error code and message, and the call connection ID and call UUID, if available.

Genesys Multicloud CX Web-based API Reference 5


	Genesys Multicloud CX Web-based API Reference

